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QUALITATIVE ANALYSIS OF FORMS OF MOTION IN THE
PROBLEM OF THE MOTION OF AN ARTIFICIAL SATELLITE
IN THE NORMAL GRAVITATIONAL FIELD OF THE EARTH

Ye. P. Aksenov, Ye. A. Grebenikov, V. G. Demin

Introduction

In the theory of motion of artificial satellites whose
orbits lie outside the earth's atmosphere, the basic perturb-
ing factor is the deviation of the earth's gravitational field
from a central field. In an earlier paper [1] the present au-
thors showed that the potential of the earth's gravitational
attraction is fairly well approximated, with accuracy to second-
degree terms with respect to flattening of the earth, by the po-
tential function of the problem of two fixed centers of equal
mass situated at some imaginary distance from each other. The
expansion of this potential function, which we term the normal
gravitational field of the earth, is expressed by the formula
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where P2k <:é> is a Legendre polynomial of order 2k; r =

= ~/:x2-+ 72 + z2 ; ¥ ¥y Z are rectangular geocentric equatorial
coordinates of the satellite; f 1is the gravitational constant;
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M is the earth's mass; ¢ = 0.0331406 RO; RO is the equatorial

radius of the earth (the value of ¢ 1is determined on the basis
of I. D. Zhongolovich's results [2]).

Satellite motion is studied in generalized elliptical co- -

ordinates W, A, W, related to the rectangular coordinates by the
formulas

~
[ 2 2
x=cN (1 +2) (1 - p) sin w,
\
/
/
y=cN (1+ 22) (1 - ud) cos w, (2)

The elliptical coordinates W, A, W are determined from
the following first integrals of the equations of motion:

2
(&% amb+ 2 (op - W) W2 - (20, + oF), (3)
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The symbols h, ¢,, c, denote arbitrary constants of inte- (174
gration, with the constl.nt related to the magnitude of the

total mechanical energy h\1 of the satellite in the following

manners:

he” = - h,. (6)

In formulas (3)-(5), T is an independent regularizing variable
related to the time t by the differential equality

ar_ 1 . (7)
dt ~ R+ A2

From the conversion formulas (2), it is clear that real
values of the rectangular coordinate correspond to

lw =<1, (8)



Note also that the conversion formulas (2) may be used to
derive the equations

x>+ y2 z2
+ =1, (9)

- =1, (10)

- = 0. (11).

Equation (9) demonstrates that if the differential equa-
tions of motion allow a solution A = const, then the moving point
will be lie consistently on an ellipsoid of rotation. Similarly,
if w = const is a solution of the equations of motion, then the
moving point will lie on a hyperboloid of revolution of one sheet
(10), and, finally, if there exists a solution w = const, then
the motion of the point will take place in the meridional plane
passing through the 0z axis.

A1l forms of motion in the problem discussed may be broken
down into three categories depending on the value of h . Motions —
corresponding to h > O will be termed elliptical motions. Motions
corresponding to h < 0 will belong to the class of hyperbolic mo-
tions. The class of parabolic motions will embrace all trajec-
tories for which h = O.

This classification of motions is accounted for by the
argument that when c¢ is put equal to zero in the equations of
motion, these equations revert to the differential equations
of the two-body problem, and then the motions belonging to the



first class will take place on Keplerian ellipses, the trajector-
ies belonging to the second class will be hyperbolas, and the
trajectories belonging to the third class will be Keplerian para-
bolas.

Among the trajectories defined by the differential equa-
tions of the problem will be found some which lie entirely with-
in the interior of the earth. These trajectories are of no wval-
ue in practice, and we shall therefore ignore them in the dis-
cussion. Motions occurring on trajectories which pass even par-
tially outside of the earth's surface will be termed real motions.
Among these motions will be found some which take place on re-
stricted trajectories which lie entirely outside the earth's sur-
face. These motions will be termed satellite motions. Ballistic
trajectories will be the term applied to those restricted trajec—
tories lying partially inside the earth.

1. INVESTIGATION OF THE ELLIPTICAL COORDINATE

The general solution of the differential equation defining 175
the elliptical coordinate W depends on the roots of the poly-
nomial

A

£(u) = 207+ 2 (o, - B) WP - (2e,+ ) . (12)

The roots of the polynomial f(u) are found from the expression



L= h - cpty (h+ cp)?+ 2he?
2h (13)

Let the roots of f(p) be = bys * Wy The discriminant

2 2
A= (h+ c2) + 2hc1 for the class of elliptical motions (b >0)

will always take on a nonnegative value. From this, we infer that
of four roots belonging to the polynomial f(u), at least two (which
we shall term i,u1 to be specific) will be real numbers, whereupon

| w |21, (14)

Depending on the values of the other two roots + uz,

we may encounter the following cases illustrated in Fig. 1: a)
W, is a complex quantity; b) b, is a real number satisfying the

constraint lpzl >1; ¢) b, is a real number and lu2| <1; 4d)
W, = 0 e) M, is & real mmber equal to 1, |u2| =1; f) [uﬁl =
= l“g‘ =1.

From formula (12), we infer that the domain of real W
values is defined by the inequality

£(w) = 0. (15)



In case a), the polynomial f(u) satisfies condition (15) at
MR I“1| 2 1, but at these values of the variable w, the rec-
tangular coordinates x and y will not be real. We may
therefore neglect case a). Case b) need not be considered
either, since the inequality |u,| >1 is equivalent to the in-

equality 2hcf

< 0, which cannot occur in the case of elliptical
motions. For case d), it follows that z = 0, i.e. we obtain equa-
torial orbits. Case e) is realized when c1 = 0. But under that

condition we infer from eq. (5) that w = wb, i.e., the case of

polar orbits. Cases d) and e) will be discussed in detail in a
separate article. Case f) may occur at c, = 0, h= - C and in

that case polar orbits will also occur.
For case c), we infer from the condition O < |u| <1 that

2
2e, + ) < 0. (16)

The inequality (16) aids considerably in simplifying the search
for roots of the polynomial dependent on the elliptic coordinate
A.

The spatial motions of a particle are consequently
possible only in case c¢), with the exception of socme motions in
the plane.

The function f(u) may be factored into

2

2). (17)

£(u) = 20 (w2 - uf) (W% - u



Then, from equation (3), we obtain:

dis

ff(;@ - 6d) (W2 - )

= «/ 2h(T + c3) . (18)

As a result of the inversion of the elliptic integral
(18), we obtain the elliptic coordinate u as a function of the
regularizing time T in the form

b= W, sno0 (7 - TO), (19)

where

—r

o= u1J 2h , (20)

7o is an integration constant. The modulus of the elliptic

function W is

k:ﬁ, (21)
¥y
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Fig. 1. Possible forms of the plot of f(u),
corresponding to various wvalues of “'2:

a. complex quantity; b. real nmumber (lu.zl >1);
¢. real number (|u|2< 1); d. My = 03

b
e. real number (|“'2| = 1); f. redl number

(g | = wg| = 1).
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2. STUDY OF THE QUADRATURE DEFINING THE
ELLIPTIC COORDINATE A, CRITERION FOR THE
EXTSTENCE OF REAL MOTIONS

Integration of equation (4) yields

da

S Vfi"fij =T+ c (22)

where the polynomial § (A) is expressed by the formula

y(A) = —2m% — 2 33 & a(c, - B)AR = &M ) 1+ (20, + ¢2).
03 2 03 2 1

(23)

We designate the roots of the polynomial y(A) as A Xz, 13, XA.

A1l coefficients of the polynomial ¥(A) are negative, con-
sidering the inequality (16), so that its real roots can be only
negative. Depending on the values of the roots of the polynomial
¥(1), we may distinguish the cases:

AT17



a)

c)

d)

£)

g)

1)

3)

k)

1

¥(1) has imaginary roots

N =2p= A=) <0

).1=k2=)‘3<x4<0.

M

M

M <Ay= 13<l4<0.
11 2<x3:x4<0.

A, = Ay < 05 roots )‘3 and )\4 imaginary.

k1 < A, < 0; roots )‘3 and A 4 imaginary.

In our subsequent discussion, we shall demonstrate that
no real motions occur in some of the cases listed. The exis-
tence of real motions requires the fulfillment of the follow-
ing constraint inferred from formula (9):

¢ (1+ 1% >gr? (24)
pol
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where R is the polar radius of the earth, or

pol

x| > 30. (25)

For convenience, we consider, instead of the polynomial
?(l)t a newly introduced polynomial ¢(\) having the same roots
as y(A\):

() = A%+ add + A2 + ad + 4. (26)

The coefficients a, b, and d are obtained from the formulas

— c _ 2co + ¢
a =M, b=1_2%22, a=_22"1 (27)
c3h h 2h

These coefficients for spatial motions belonging to the ellipti-
cal class are positive, since
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b>d+ 1. (28)

Note that no real motions occur in case a, since
¥(d) <o.

3. TREATMENT OF THE CASE b (7\1 = A= A= 14) /178

The polynomial q;( A) is plotted graphically in this case,
in Fig. 2.

oL,

oy &
\]7’ /

g A

Fig. 2. Plot of
the polynomial @(A)

in the case 11 = )‘2:
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Note that if real motions were to occur in this case,
they would have to take place on the ellipsoid

2 + y2 _z_z_

+ = 1. (29)
02(1+l12) c2X12

Bearing in mind the fact that the coefficients of A and

3
A in the polynomial @(A) are equal, and using Vieta's theorem,
we may obtain

_ 43
A=A (30)

Hence, )\1 is either equal to O or to + 1. But none of

these proposed roots will satisfy the criterion for the ex-
istence of real motions, and we conclude that there are then no
real motions, in this case.



15

4. TREATMENT OF THE CASEc(k1 =, = x3<x4<o)

The graphical behavior of the polynomial Q(X) in this case
is seen in Fig. 3. For this case, Vieta's theorem yields the
following equations

3)\1"' 14:—8.,

2 =
3T+ AR, = b,

¢ (31)
3 2, - _
X1 + 311).4 a,
By o= a.
14

From the first and third of equations (31), we find that

M_1N (32)
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Taking into account the fact that all the roots of @(\) are
negative, we shall have

> > 0. (33)

This last inequality is satisfied at

j
N3 < <- = (34)

Since the region where motion is possible is defined by the
inequality k1 <A< XA, the elliptic coordinate will not exceed

N4 3 in absolute value. This last constraint stands in contra-
diction to the criterion for the existence of real motions. We
then infer that no real motions occur in this case.
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5. THE CASE d (A, <2, <2y <2, <0) 79

We shall now prove that if all the roots of (1) are
real and unequal, then satellite and ballistic motions exist.
Moreover, we shall prove that two roots of the four are included
in the open interval (—1,0). The function ¢(A) is plotted in
Fig. 4.

The Sturm system [3] for the polynomial @(A) consists of
the functions

~

e(d) = A4+ axd + ;A% + ax + 4,

9, (N) M3 + 3a)% + 2bA + a,

5 (35)

(pz(l) a A" + byA + doy

W

q;B(k) = a5k + by,

cpA(k) = a.

The coefficients of functions (35) are expressed by
the formulas
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_ 3a% _ 8b L, . &b - 6a _ a? 16d
32‘ —" 2 = - ’ dz“ "
16 8 16
. = 3ak+ %2 + 140% - 1802 - 413 - 624 - 16bd
3 - ’
2
8
*2
o - a’b + 3a3 - 9a3d + 32abd - 48ad - 4ab?
3 2
16a
2
2 2
g = aqbsbg — acdsy - asbg .
4 a2
3 (36) /

We infer from Sturm's theorem [3] that all the roots
of the polynomial q)(k) are real and unequal on the open inter-
val (— ®, + ), if the inequalities

a >O,
2
a2>0,

(37)

a > 0.
4
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all hold simultaneously. Although we know all the roots to be
negative, we nevertheless consider the interval (— =, + =)

in order investigate the least number of inequalities compris-
ing the system (37). To solve the system (37), we examine the
following functions in many variables:

Zq4 = 3x2 - 8y,
z2 :-3x4+ x2y2 + 1[.x2y - 18x2 - AyB -d (6x2 - 16y),

Zg = _36x 0 + 918}'2 - 84x6S; + 354X8Y + 256"45'4 - (

- 24358 - 11685552 + 1152805 + 13445y3 - 256x%y° -

- 1728£4% + a-f (%, v, d),

/
(38)

where f (%, y, d) is a polynomial of not higher than ninth

degree in x and y. The inequalities (37) are equivalent to
the inequalities

z, >0,

z >0, (39)
2

/180
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Fig. 3. Slope of poly-
nomial @(A) in the case

= = < N
X1 k2 )\3 XA<O

To solve the inequalities (39), we resort to polar co-
ordinates. The functions z,, 2., z., in polar coordinates assume

17 27 3

the form

z, = 3r? cos? @ - 8r sin g,

z

= a, (cp)r4+a

2 1

9

K
zo=b_ (p) 10+ T b (pd) r'
3 0 k=2 k

(Q)rB + ) (Q,d)r2 + 3-3 (Q,d) T,

v~

(40) )
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Fig. 4. Slope of polynomial

@(1) in the case A <A, <

The coefficients a 0 (p) and by, (p) are expressed by the formulas

ag(e) = cos? ¢ (sin® -3 cosch), by (e) = 9 cos® cp(sinch - 4 cos? ¢).
(41)

At sufficiently large values of r, the inequalities (39) are
fulfilled when

aO (CP) > 0,

(42)
bO (g) >o0.
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For positive values of x and y (x = a, y = b), the con-
straints (42) are fulfilled when

2 < tan @, arc tan 2<¢ < % . (43)

Consequently, for large values of the coefficients a and b, the
polynomial ¢(X) has four real and unequal roots and, in accord
with the upper-bound theorem for the absolute roots of a poly-
nomial [3], the roots may be fairly large, generdl ly speaking.

We shall now show that the roots kB and 14 are included

in the open interval (— 1, 0). For this, we apply the Budan-
Fourier theorem [3] to the interval (—1,0). The polynomial
(L) and its derivatives to the 4-th order have the form

o(d) = 2%+ aad + ;A% + ar + 4,

o' (A) = 43> + 3aA? + 2b) + g,

(
¢"(A) = 122% + 6al + 2b, g &)

H

o' (A) = 24\ + 6a,

24.

V)



23

When A = 0, (0) >0, ¢' (0) >0, o' (0) >0, 9'" (0) >0, /181

cva (0) >0. If A=—1, then it is mandatory that ¢ (—1) >0,
since ¢ (—1) < 0 would be equivalent to the condition tan ¢ < 2,
but this stands in contradiction to the constraints (43). Note
also that, for real motions, @'" (—1) >0, i.e., a > 4 If we
assume that "' (—1) < 0, then this will mean that a < 4,

b <6, d <5, But in this case, the roots of the polynomial
would also be less than 6 in absolute value. Consequently, the
variation in the signs of the functions (44) at A = —1 would
occur, in the case of real motions, in one of the four variants:

I | IT | IIT | IV

o(-1) + | + | + +
@' (-1) + - - +
" (-1) - - + +
"t (1) + + + +
o (1) + 1 + |+ +

The wvalues of the functions (44) at A = — 1 will be found from
the formulas

e (1) =1-22a+ Db+ 4,

o' (-1) = - 4+ 4a - 2b,



" (<1) = 12 - 6a + 2b,

q,ln(_«]) = - 2, + 68., > (45)

P V(1) = 24

The corresponding inequalities for the cases I, II, and III are
not contradictory. For the case IV, we find that the first and
second derivatives will be positive when a < 4, but, as indicated
earlier, this case constitutes unreal motions.

The inversion of the elliptic integral (22) for the case

of real and unequal roots yields, for the variable A, the ex—
pression

A+ B P (1o )

’ (46)
C+D sn201 (1 - 71)

where

-_—')\2()\3—X1), B:)\B(M-)\?‘),

(47)
C=23 - > D:)~1-)\2,




01 = ‘/Zh()‘A ~ ;2) ()\3 - )‘L) . (48)

The modulus of the elliptic sine, k1 is expressed by the formula

[y, - 2g) (g - ay)

k =4y (49)
(O, -2 (3 - 1)
The coordinate w is defined from the quadrature
(W2 + 22) dr
w= c5 + cy j‘ (50)
(1 - u2) (1+23
or
w=cs+ c1J1—c1J2, (51)

where

/182
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_ d
%-J —, (52)
1 - pl
dr
I, = . (53)
g J1+x2

The integral J 1 for all the cases treated in the article

manifests the same form:

Jd. =

1 W(CP, n, k) ’ (514»)

ol

whereTT(g, n, k) is an elliptic integral of the third kind:

9= am [0 (T - To)], (55)
n= - ug . (56)

The integral I, [after substituting x = sn o, (r - 71)]
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is expressed in the form

i (a0x2+ 8.1) dx
Jd = +I .
2712 (g + byx? + b)) Ji1 - @) (1 - k52

(57)

The coefficients in (57) are expressed in terms of the co-
efficients A, B, C, D by the formulas

_ 28D (BC - AD) B2C2 - Ap?
ao - 01(32 + D2) ’ a1 01(B2 + D2) ’

bO=B2+D2, b, = 2 (4B + CD),

b2 = A% + g2 . (58)

The second term in formula (57) appears in the form of
the sum of two elliptic integrals of the third kind with com-
plex conjugate parameters. These integrals may be expressed in
terms of elliptic integrals of the third kind with real para-
meters [4]. Here, we present only the form of these expressionms,
without going into detail as to the wvalues of all the coefficients,
which are expressed in a rather cumbersome manner in terms of the
roots of the polynomial ¢(k). Note that it is not feasible to
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make use of the formulas mentioned in practical calculations.
In practice, it would be better to resort to expansions of
elliptic functions and elliptic integrals, bearing in mind
the fact that the moduli of the elliptic functions and inte-
grals are extremely small quantities in the case of satellite
motions,

Taking the Holile transformation [4] into account, the
integral J o WAy be stated in the form

T .
3, = — X§+ Ly + tolo, (59)

where the functions L1 and L2 have the form

F(am[oq (T - 79)])

g.
i

(1=1, 2). (60)

The coefficients 1., 1., g;5 n;, Q, are related to (58) in

a cumbersome fashion.
Accordingly, we derive a formula of the form:

A83




011’ 21_
c5—1+)\2+ c"l'[(cp, n, k)—c111L1 —0112L2.
2 (61)

wW =

for the coordinate w.

Fig. 5. Reglon of possible

orbit positions in the case

)\1 <l2<)\3<14<0:

1. earth; 2. outer ellipsoid;

3. inner ellipsoid; 4. hyperboloid;
region containing orbits latched.

The relationship between the true time and the regular-
izing time is found from a formula of the type
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2
u‘ —— ———
t= o+ (W43 T - —l E (gk) + L + tL,  (62)

where E (@,k) is an elliptic integral of the second kind, and
the functions Il and L, are expressed by formulas similar to

(60). Note tha formfa (62) should not be used in practice,
since the expansion of the integrand functions into series

with subsequent integration will substantially reduce in the
computational labor.

9@55 ;
£
.
.
5
2z

—_ !

. Y //" 74

Fig, 6. Slope of polynomial
@(1) in the case N <Ay =

= 13 = ka < 0.

In the case d, the trajectory lies between two con-
focal ellipsoids A = 11 and A = kz and outside the hyper-

x2'+ y2 22

— =1 (Fig. 5).
< 2 2
c (1—M2) c2u5

boleid
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If |12| < 30, we will have ballistic trajectories, i.e.,

in this case one of the ellipsoids will lie inside the earth,
and the region where the trajectories may be accomodated will
occupy the volume outside of the hyperboloid from the earth's
surface to the ellipsoid (just as in case e, below).

The trajectories will be tangent to the ellipsoids in
all cases (or to the ellipsoid, when ballistic trajectories
are involved), and to the hyperboloid by virtue of the contin-
uity of the derivatives with respect to T of the coordinates
X, ¥, and z.

6. THE CASE e (N <Xy = A3 = 1 < 0) /184

The polynomial ¢(A) for this case is plotted in Fig. 6.
The equations expressing Vieta's theorem for case e are
given by the formulas

M=,

2 =

>~ (63)
2 3 - _
31112-+ XZ-— a,
3 _
X112 = d.
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From the first and third equations, we find that the
existence of real motions (h1 < - 30) requires that the in-

equality

— 5 <- 30 (64)

be satisfied.

A1l solutions of the inequality (64) lie within the
intervals -0.59 < )‘2 < -0.58, 0.56 < )\2 < 0.58, 90.5 < )‘2.

Taking into account the fact that the value of A must be
2
negative, we may write that -0.59 < )\2 < -0.58. At these
values, b >4 + 1.
Accordingly, in case e only ballistic trajectories are

possible. The coordinates p, A, and w are expressed as
follows:

= o -7
U'2 sno (1 0),

M-
1+A1 (7 —71)2

A= +
)‘2

’

W= o eT+ L T le m, 1) -
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‘201 M (u-p)%q? L pthy }
-————={— 1
(g-r) y2r 2 7 (wp)2ed? 2 O 222
(65)
where
W=/ (-1, =20 - )P (66)

250 - M) ~/1 + Af+ x2+ x1x2 - (xz - 11) (1+ >.2)

M
1 — ’
4o (1 + x)\/1+ A2+ x2+ A2
>
2 .2
AL —
N = 2 ™ N

(67)

’
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4/1 + )\fa— A22+ )‘,‘21§+1+ AMAy
q= .
2 (1+19) (68)

The relationship linking the time t and the variable T has the
fora

(g = AM)2 (T - ™)
2 (1 + ul)

_ 2 2
t = c6+ (p.1+ x2)7+

M+ 32 2
‘iﬁ——garctanu‘%E{am[G(T—To)];k }_

(69)

An idea of the arrangement of the trajectories in this case may
be gained from Fig. 5; the trajectories fill the space between
the earth's surface and the ellipsoid A = 11.

7. THE CASE f (POLYNOMIAL o(\) HAS TWO PAIRS
OF MULTIPLE ROOTS)

The function @(A) for this case is plotted in Fig. 7.

/185
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PLR) f

Fig, 7. Slope of polynomial
cp(k) in the case )\1 = )‘2 <

<x3:x4<o.

We shall prove that real motions are possible in this case
only on the surface of the ellipsoid A = 7\1 y with the ellipsoid

A= )‘3 completely inside the earth. In fact, the relatiomship

linking the roots and coefficients of polynomial q;(x) here dis-
plays the form

2k1+2)\3=-8.,

2 2 _
W+ g+ xB_b,
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2 2_ _
2)»1 )\3 + 2)\1 13 = - a, X

(70)

2,2 _
X1X3—d.

From the first and third equations in (70), we may arrive at

x1 + xB = >.1x3(x1 + x3) ()

or

MAg o= 1. (72)

Consequently, when )\1 < - 30, then - 1 < )‘3 <0, i.e., the
30

ellipsoid corresponding to A = )‘3 will be completely inside

the earth, if we take into account the criterion for the ex-
istence of real motions (25). From the last equation in (70)
and from (72), we see that d = 1. Coefficient b will be
larger than 4, as we realize from the second equation in (70).
Note that A\ = 11 satisfies the equations of motion. The argu-

ments offered lead us to the conclusion that real motions are
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possible on the ellipsoid.

The formulas for the relationships linking the elliptic
coordinates and the time to T in this case take on the particular-
ly straightforward form:

b=, sno ('r—-ro),
A=A
1’
° ° >
w=c_ - T+~ ||{p n, k) (73)
5 1 + )‘2 O]T b4 ’ »
1
u2
~ 2 2 1
t = cg t (u1 +).1) T+O'_E (cp, k).
J
The rectangular coorsinates of the point x, y, z are ex- /186

pressed by the formulas

x=a, J1 - u% sn? [o(T - TO)] sin w,

y= a1 ‘J‘] - IJA% sn2 [O(T - TO)]COS W e (74)

2= = byhy sn [o( T - TO)]’
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Fig. 8. Region where orbit motioms
are possible in the case when ¢(A)
has two pairs of equal roots:

1. earth; 2. ellipsoid;

3. hyperboloid; orbits lie in
hatched region.

(&)

A

. /
2, -Jﬂla\_/,% g

7

Fig. 9. Slope of polynomial ¢(A)

in the case K1 = X2 < XB < kA < 0.
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where a , b are the semiaxes of an ellipsoid on which motion
11

occurs:

81 T Cy 1+ AR,

1

(75)

The trajectories, generally speaking, fill the elliptic belt
(Fig. 8) everywhere, with the intersection of the ellipsoid

2 2
2+ 32 2 _ 1 and the hyperboloid 22+ 32 - 22 - {

2 2
a1 b1 02 (1 - ug) 32“3

obtained as a result. In this case, the trajectories will be
tangent to their lines of intersection.

8. THECASEg()ﬁ:x2<)‘3<)%<O)

The function @(A) corresponding to this case is plotted
in Fig. 9.

If a1l the roots of the polynomial Q(X) are real, with
only one of them (the least) a double root, then the relation-
ships expressing Vieta's theorem will be given by the formulas
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x12+ 24 (gt )+ Agh, = by

\
k2 (A, + %)+ 2040 %, = ~-&
1 T A F 2NN, ’ (76)
2
AN, = d.
Mgty )
We see from equations (76) that
2
A+ A, = -1).
R > (g2, - 1) (77)
1 -
1
Now consider (77) in greater detail. The criterion for /187

the existence of real motions (25) is fulfilled when

A, < - 30. (78)

Under this condition M > 0, and

o




4

max

M <30

2
. (79)

T -2

Taking into account formulas (78) and (79), we proceed
from (77) to

o<%h<u (80)

But this constraint in turn implies that

| A3+, | <1, (81)

The formulas advanced show that when the ellipsoid
A= k1 has dimensions greater than those of the earth, then

the values A = A, and A = AA correspond to ellipsoids whose

3

semiaxes are less than unity and which are completely inside

the earth.
Inequality (28) b > d + 1 for that case may be stated
as follows:
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._.___1_.>..__. (82)

Inequality (82) is always fulfilled at values k1 < -30.

(2) }\
|

i
&

Fig. 10. Slope of poly-
nomial @(A) in the case

)\1 <)\2= )\3<)\4<0.

Hence it can be concluded that real motions are possible
in the ellipsoidal belt in this instance. The formulas for the
elliptic and the rectangular coordinates have the same form as



43

the formulas in the preceding section, except for the differences
in some of the expressions for constant coefficients.

9. THECASEh()H <x2:x3<x4<o)

The polynomial g(A) for this case is plotted in Fig. 10.

The relationships between the roots and coefficients of
the polynomial ¢@(A) (Vieta theorem) are given in this case by
the equations

2 -
2)\1K2+ 2)\2k + )\2+ 11)\4— b,

4 S
(83)
MAZ + AN, F A, = —a
1%2 1%2% 7 2% ’

2, _
}‘1>‘2)‘/+ = d.

Fram (83), we may derive the relationship
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FRRYE (A2 - 1), (84)

and, taking into account the constraint b > d + 1, we obtain
2
(5 = 1) (qay, = 1) < 2,04 + 1), (85)

We shall show that only ballistic trajectories are - /188
possible in case h, i.e., we shall show that the ellipsoids
corresponding to the wvalues A = kz and A = A, are completely

4
inside the earth when )\1 < -30.

Asasume A n < -30. Then the roots )\1 and }‘2 will be, a

fortiori, less than -30. But, under these conditionms, 2 >0
1-23
and L‘)\ A -1 > 0. Taking these inequalities into account, we find

that the right-hand member of (84) is a positive quantity, and,
because the roots )\1 and A 4 are negative, the left-hand member

of that equation will be negative. Consequently, if we assume
~that all the ellipsoids envelop the earth, equation (84) will
not be satisfied.

Assume further )\2 < -30, but -30 < A, < 0. Then

4
we shall have
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<- . (86)

For (84) and (85) to be fulfilled, necessarily k1 )\4 -1<0.

2\,

(A, - 1)
_ 32
1 x214 15

case, |M t+ M| < }E’ and this contradicts the inequalities

This in turn implies that

<1 . But, in that

Ay < -30 and k2 < -30. Hence, we may infer that the ellipsoids

A= Ay and A= 1%, lie completely inside the earth.
We shall now demonstrate that a set of roots k1, )\2, and

A 4 may be so chosen as to satisfy (84) and (85) as well as the

criterion for the existence of real motions. From (84), we

2
A, (A5 -1) -2
_ 4 ‘N2 2
M = 2 . (87)
1-4, - 200,

This equation, in the case of near-zero negative values
of )\4, and at values kz = -1 - ¢, where ¢ is a sufficiently

small positive quantity, will yield values less than -30 for
A{- Under these conditions, (85), which are equivalent to the
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inequality b >4 + 1, will also be walid.
In sum, we may draw the conclusion that, if all the

roots of the polynomial cp()\) are real, and the middle root of
these has a multiplieity of two, then there exist only ballistic
trajectories among the real motions. Motion will occur in the
space between the surface of the earth and the ellipsoid A = A\q.

The formulas for the elliptic coordinates p, A, w and t
as functions of the regularizing variable T will be of the form

W=, sn0 ('r-'ro),

) )\4(12 -N) (- eu)2+ X1(14 - )‘2) (1 + e)?
(g - ) (1-e®2+ () -2) (1+ a2

b

A

A
W= 04+-ai'f+'clo.ﬂ.(¢’ n, k) -

4

- o {M_;In [(e® - my)2 + n?] +
a, v 2000 - M) (n, - 1) 1

M u
2 M + N e -m
+2_ ln[(eu—m2)2+ n§]+—1n—11———1-arc tan—-Li-
n I
1
+M2m2+N2 eu-mz}
—————— arc tan —m—™=J ,
n, n,

(88)
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where

u=y2n (g =2 0y = 2g) (7= 1)

(89)

and oy, m, and n,, D, are, respectively, the real and imaginary

parts of the complex conjugate roots of the equation

4 3 2 -
a4x + a3x + 8, + a3x+ aL— 0, (90)

-~

ay= 6 - b’ + bah+ A2 e+ 6ah?

- —4+4a4-41§+ Aa"xf,

a -
3 (91)

342 1+ a2)2+ (XL+ 8.27\1)2 .

The quantities A, M1, MZ’ N1, N2 are defined by the equations

/189
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2
A+ M1 +M2= (1+a2) R

- +m)A-2mM -20M + N+ N_= - 4+ 4at
2(m +m) 2mMy -amM Ny Ny = - A e

2 2 2 2 2 2
(m1 +m +4n1m2+n +n2) A+ (m2+ n2) M1 +

2 1
>
2, .2 _ _ =~ 6 — Ja® 4
+ (xn1 + n1) M2 anN1 Zn1N2 6 La™ + 6a*,
2 2 2 2 2 2
[- 2m (m2+ n2) - 2m, (m1 + n1)] A+ (m2+ n2) I\I1 +
+ (@ + nf) Ny = - 4+ dab,
(m12 + n_12) (mg + ng) A=(1+ a2)2, y
(92)
se'— 1 e

2
— 2 2 b
=gt (p.1 + xz)f - g (q,,k)+P1-

+ arc tan
o e2u—2seu+1 Q‘

(93)

where
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e

= 2/ - &) (A4 - A2) ,

A= M J (94)

1
1 = 8,/ oh ()‘2 _ )‘1 )3/20‘4 _ 12)3/

P

2.2
- 160°\° +
L= 16,

+ 1652 + 1605 + 1627 - 321, X - 320N+

2 274

S
2, _ 2 _ 2m2
+64A, xzx A 320 2,0 " 320, 1s
Q_‘ _ 2(2l2 -NM - 14) p 4ho _
1 —
‘/(12-)1) (14-12) v 2n )

(95)

10. THECASEi(X1<12<13214<O)

The polynomial (A) for the case i is plotted in Fig. 11.
Vieta's theorem for the roots of the polynomial () is
expressed by means of the equations
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2 _
x1x2 + 2x3(x1 + 12) + 13 b, |
5 (96)
2x112x3 + ).3(7\1 + xz) = - a,

2
= d.
7&1 X213

1

AN DT

Fig. 11. Slope of the poly-
nomial @()) in the case
L‘ <)‘2<)\3: X4<O.

In a manner similar to (84) and (85), we here exhibit the for- /1o
mulas
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A+ A 23 ( )
= ALA -1
1 2 1-x§ 1S ’
L
(97)
+ A <)‘§_1
3
/

It is readily shown that the ellipsoid corresponding to
the value of the multiple root A = 13 lies inside the earth.

In fact, the assumption that XB < -30 implies the inequality

0< )\1X2 < 1. This inequality cannot be wvalid since l1 < >‘2 < )\3

and hence A1 < =30 and A, < =30, On the other hand, it is clear

2
from (97) that if the multiple root 13 is chosen on the open

interval (-1, 0), then these relationships will hold, at least
that the root 11 may be made less than -30.

The motion of the point will take place between the
ellipsoids

x? + y2 22
. +2 _1,
® (1 +2%) cAr
1 1
2
X2+y2 +z = 1.

2 2y 252
c (1+x2) cxz
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If the initial conditions are so specified that both

roots, k1 and kz, are less than -30, then satellite motionms

will occur. If, on the other hand, 12 > - 30, ballistie

trajectories will occur.
The formulas for the coordinates w, A, w are of the form

= u2 sn o (v - TO),
X = A+ Becosu ,
C+Dcosu
c
W= ¢ ___ﬁ_T+—]'n(¢, n, k)+
> 142 o
3
2cq M r u _ N2
{20 (G g+ ¢
tJ/2n (A3 - N) O3 -1y 2
+n2]+
1
M M + N tan = - my
u
+ 2 In [(tan - —m )zfnz] + —121————1— arc tan —2 +
2 2 2 2 n,
Moms + N t u_'mz
+£L£arctm_aﬂL_},
2 ) p

(98)
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where

u= ¥ 2 (hy - ay) (g -2y) (T-1), (99)

B=3y (q + ) -2k, B=2y (4, - L))

C:2X3—>\1—)\2, Dz)\z—)\“.

(100)

The coefficients M1, M2, N1

the following system of algebraic equations:

’ N2 are defined in terms of

M1+M2=O,
—2::12M1 —2m1M2+N1+N2:A,

M1(m§ + n%) + M2(m12 + n12) - 2N, - 2mN, = 0,

N, (m§+ ng) + N, (m$+ nf) = B,
d (101)
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~
7. B% (c - 20) - 4% (D - 2B)
B2 + D? ’
>
(102)
= _B% (c+ o) - 4% (D + 2B)
B2 + D? ’
J

/(k1 - A3) (./1+>\12+ x2+ xgxg 1)
2 (, -x)(1+x2)

/(k - ) (A - N) (./1+x1+x2+ x,x2+1)

2003 - Ap) (1 +22) (A2 + 23 + A22)

(103)

The time t depends on the variable T in accord with the
formula

2

t=c¢ +(p.2+ X2)T-“—1—E(q), k) +
6 1 1 G




1 ( AZ

+ ‘
IM/Z(XB - N )3/2(13 - k2)3/2 1C + D cos u

-+ B2 arc tan ( 8¢tan ;)}

(104)

where

2

BZ:__—_-—
J 62 - p?

[G(A2D2 -~ BRG%)

- _ B2
2 2 (ABD BC)].J

(105)

The regions of space in which the motion of the point mass will

take place are depicted in Fig. 5.
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11. THE CASE j (x1 = A, ; ROOTS x3 and 14 IMAGINARY)

The polynomial q(A) for this case is plotted in Fig. 12.

Fig. 12. Slope of poly-
nomial @(A) in the case
11 = k2 and imsginary XB

and XA.

We now prove that when the polynomial (i) has two imagin-
ary roots and one real root of multiplicity 2, real motions are
possible on the ellipsoid A = X1. For this case, the relation-

ship linking the roots and the coefficients of (i) are re-
presented by the equations
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211+2p:—a,

2):b

k$+ Ap + (p? +

(106)
2)~12P + 211 (P2 + q2) = - a,

2, 2 2
k1(p +q) =4

andk3=p+ ig, )\4=p-—iq.

We shall now show that the equations (106) and the in-
equality (28) are valid at values A, < - 30. From the equations

(106), we may derive

2 (p?+ q% - 1), (107)

(1 - x12) (p% + g% - 1) > - 4h p. (108)

Inequality (108), as the counterpart inequalities above, ex-
presses the constraint b > d + 1. Inequality (108) may be
stated as
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(1 -3 %+ q -1

2 < - Ap. (109)
A (p + q° - 1)
1 - 2
At )‘1 < - 30 the fraction _J. is positive, so that the
following inequality holds:
(% + & - 1)*
<-4p. (110)
P

Inequality (110) holds when p < 0. The quantity p? + q?
may be determined from the formula (107):

2 2 :P(1")t12)

A
1

(111)

Agsuming X1 < - 30, and taking p < O into account, we

shall have the constraints:

O<p?ta<i. (112)
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2
for p2-+ q . Accordingly, -1 <p < 0. At these values of p,
inequality (108) will always hold.
We see then that real motions are possible md that they
will occur on the ellipsoid

x? + y2 + z2

= 1.
2(1 + x12) ce

2
1

The formulas for the elliptiec coordinates u, A, w and
the rectangular coordinates x, y, z are listed in Section 7
(formula (73)].

12. THE CASE k (x1 < A, < 0; ROOTS x3 and 14 IMAGINARY)

The behavior of the polynomial @(A) is graphed in Fig. 13.

We shall prove that when the polynomial @(A) has two real
and two imaginary roots, then both satellite and ballistic tra-
jectories will occur among the real motions. The roots and co-
efficients of (L) are interrelated by the formulas

|
k1 + lé+ 2p = - a,
MA, v 20 (G + ) + (p2+ ¢°) = b,

r (113)
sz1l~2+ ()‘1 + )\2) (P2+ q.2) = — 8,
MA, (07 + o2 = d.
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Bearing in mind b > d + 1 and the fact that the right-hand
members of the first and third equations in (113) are equal to
- 8, we may arrive at

22 (\Mry - 1)+ Oy + 1) (P + ¢ A1) = o,

> (114)
2
p[(l112 S Dl OV Az)ﬁ< 0.
/
We see from inequality (114) that
p <O0. (115)

For satellite trajectories, A1 < - 30 and A, < - 30, so that

2
MA, -1 >0, and A, *+ A, <0. But in that case, (114) may

occur only when

0<p+ g®<, (116)

For ballistic trajectories, the constraint (116) is not mandatory.
The formulas for the elliptic coordinates p and A have the
form
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b= W, sno (T—TO),
(117)
y
A+Benog (1-1)
A= )
G+Dcn01 ('r-'r1)
7/
where
A= -mM - nhy B = —mM +nk2,
(118)
C=-m-n, D= -m+ n,
m:«/(p-12)2+ “,
> (119)

n=‘/(p—l1)2+ q2,

o, =N 2. (120)

1

The modulus of the function en o, (1 - 71) is expressed

by the formula
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_1‘/()‘2-);1)2—(111—11)2
) . (121)
mn

Pl2) 5

Fig., 13. Slope of poly-
nomial @(A) in the case
)\1 <k2<0and )\3, 14

imaginary.

Inequality (116) demonstrates that, for satellite motions,

the modulus k1 is an extremely small quantity.

The coordinate w is determined from the formula

= o, + °1'l'|'(¢, n, k) - ¢ J, (122)
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The integral J2, just as in case d, is represented as the

sum of two elliptic integrals of the third kind with complex
conjugate parameters. Using the Hofiel transformation [4], we
may restate the integral J 5 in the form

D2
J = e——T+ L + 1.L, ,
2 B2+D2 1™ 272

where the functions L1 and L2 are of the form specified by (60).

The relationship between t and T is given by a formula of the
form (62).

As was mentioned in Section 5, formulas (61) and (62) are
hardly suited to use in computations of concrete satellite
orbits. It would be much quicker to obtain numerical results
having the required accuracy by a series expansion of the inte-
grand functions in powers of small values of k and k1.

The formulas for the rectangular coordinates x, y, and z
are of the form

./1 —p.g snzu/(A+B cn'u)2+(c+ D cn'u)2
= cC

sin w,
C+Denw

,./1—p-gsnzu./(A+Bcnu)2+(C+Dcn‘U)2 -
6]

cos W,

C+Denwv

A+Bcn‘u’
C+Denw J

(123)

Z2 = - C sn u
)
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u=o (1 - 7),
0
(124)

v= o, (1 - 71).

The trajectory lies between two confocal ellipsoids A = X1 and

A= X2, and outside the hyperboloid

x2+}2 z2

=1
2 2 2 2 .
¢” (1 - “2) ok,

The regions of space in which the motion occurs are shown
in Fig. 5.

13. SOME CONCLUSIONS

The analysis carried out in the preceding sections makes
it possible to arrive at certain conclusions. If an arbitrary
integration constant h is positive, then the motion of a point
mass will either occor between two confocal ellipsoids of low

1 1
eccentricity (e, = sy e = or on the
LV SR 2 ;71+x§)’

ellipsoid itself. All motions of the elliptical class will
occur in a restricted portion of space. If the ellipsoid of
smaller size is located in the interior of the earth, then the
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motion of the point will take place between the earth's surface
and the larger ellipsoid.

The rectangular coordinates x, y, and z are expressed,
in the principal cases where the polynomial q;(l) does not have
multiple roots, in terms of periodic functions of unequal
periods. The elliptic coordinate p has a real period

n
2
dx
re G, X0 = | . (125)
0 /1 -k? 8in? x
The real period of the variable A is
n
2
B, Kl) = 4 (126)
T, = , K(k,) = .
! “ 1 o W 1- k$ 8in® x

The functions sin w and cos w are of period 2m. In general, X,
¥» and z are not periodic functions of the regularizing time T,
and the motion of the point will therefore occur on nonclosed
space curves, If the periods T, T 1? and 2 are commensurate for

some of the initial data, then the motion of the point will in
that case be periodic with respect to T, although this does
not imply that it will be periodic with respect to the time t.

Case d and k may be termed principal cases, dsince in
these cases the polynomial cp(k) does not have multiple roots.
The case 1 is transitional between cases d and k. For each set
of initial data, there exists some limiting inclination: at
inclinations less than the limiting value, the polynomial cp()\)
has four real and unequal roots. If the inclination is greater
than that indicated, then the polynomial (i) will have two
real and two imaginary roots.
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We here introduce several concepts to afford a more con-
venient description of the motion. The draconic period of re-
volution of a satellite on the j-th circuit will be a term for
the quantity defined by the formula

7

o= .[ (b2 + 22) ar , (127)
Tj°1

where 'rJ—1 and TY are solutions of the equation z = O or, in
other words, of the equation

sh [o (71 - TO)] = 0. (128)

The quantities TJ_1 and T used here are two successive instants
of the regularizing time variable T, at which the satellite
passes from the southern hemisphere into the northern. The real
solutions of equation (128) are found from the formula

dx
¥ 1 - k< 8in? x

il
i_ 43
CE Y

2
* 129

5 (129)

For each of the cases treated here, we obtain a specified ex-

pression for the draconic period of revolution. The simplest
formula is obtained for motion on an ellipsoid
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Tés) = (p$ + xf) (1% - 871y _

2
B [E(am[o(T® - 7
o

o B - Eam[o(r® - 1)] 1)1,

(130)

We use the term quasiperigee of a trajectory to describe the

point at which the trajectory is tangent to the smaller ellipsoid,
and the term quasiapogee to describe the point of tangency with
the larger ellipsoid. The quasiperigee and quasiapogee are,
generally speaking, not points at which the geocentric distance of
the satellite assumes extreme values on a given circuit., The term
quasianomalistic period of revolution of a satellite on the i-th
circuit will be applied to the time interval between two successive

passages of a point through the quasiperigee. The quasianomalistic
period is computed using the formula

Tl
m

T(i): J (W2 + A2)dr, (131)
mo
m

where T;—1 and Ti are solutions of the equation

A+ B sn2 04 (r - T1) 3

Ay (132)
C+ D sn? og (1 - 1)

for the case d, and of the equation
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A+ Becnop (T-m)

Ay (133)
C+Denoq (1~ 71)

for the case k.
The change in the longitude of the ascending node on the [196
j-th circuit is computed using the formula

Q= u (rd7hy —w (7). (134)

In each case, the coordinate w is computed by means of the appro-
priate parametric formula.

For the change in the angular distance of the quasiperigee
from the node on the i-th circuit of the satellite (the angle
between the radius vectors of two adjacent quasiperigees), we may
readily derive the formula

A0 A IO cos (A

i s i
i1
r1itr

i-1.1 11 1
RN ,
pi-1pd (135)
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_ " s . ._1 . s _ .
where Xi 1, kl, pl 1, ul, W ’ wl, r 1, r1 are the wvalues of

the elliptic coordinates and of the radius vector for the times
Ti—1 i
n and Tae

In concrete computational work, the results mentioned in
the article may be put to use as follows. Using the specified
initial data (initial position xb, Yy 2o and initial velocity

X §C’ %O), we compute the arbitrary constants h, Cys and Coe

The relationship between the arbitrary constants and the initial
data is found by recourse to the formulas

. 2 2
= - +
o, = ¥, (1 “o) (1 )‘o)’ (136)
2 2 . * R
o M w1 = (A + g) u.(z)-i- xg[ b2 R ]
T T 3,2 2 B 2 24
c (uo + ko) 2 2 1 - b 1 + bg

(137)

) 2

bk (s
c2=-hu~2— 02 - 12 . (138)
O (a1 -w) 1- bg

The initial values of the elliptic coordinates po, XO’ wb

and their time derivatives uo, XO, and Wy are computed using

.

the formulas
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[gg + Yo) Wy xOxO + yo¥o _ ZoZg

l:(x% + yo) Ao
(1 + 152

WO:

2y2 _ul 2
“'0) 1 “’O ko

0% + yo¥o  ZpZ0
2 2’
1+ 2§ A§

-
=31
O

sin Wy cos wy (% cos wg - Yo sin wg)

X, cos3 Wy t ¥ sin3 vo

(139)

(140)

(141)

(142)

(143)

(144)

The determination of }‘O’ kgs and wy is unique, since >‘O < 0,

O<p0<1,

and w. is chosen with the signs of x_ and yo

0 0

[197
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taken into account.

If the arbitrary constants h, c1, and c2 are kmown,
we then proceed to compute the roots of the polynomials () and
9(A). Finding the roots of the polynomial p()) is made easier
by the fact that the approximate values of two roots are known .-
from the initial data, in the case of satellite motions: ome
root is approximately equal to the ratio of the perigee distance
to the value of ¢, while the other root is approximately equal to
the ratio of the apogee distance to c¢. In the case of ballistic
trajectories, one of the roots is approximately equal to the
ratio of the distance from the center to the furthest removed
point on the trajectory to the value of c. After the roots of
the polynomials f(w) and @(A) have been determined, the case to
which the given motion corresponds will be known. Moreover, in
investigating the motion, it becomes necessary to rely on for-
mulas for elliptic and rectangular coordinates corresponding to
the specific case.

The use of the formulas derived here to describe the
motion of a concrete satellite does not prove to be convenient
in every instance. The occasional inconvenience is due to the
fact that detailed tabular data with a large number of places
for elliptic integrals of the first and second kinds, and es-
pecially for elliptic integrals of the third kind, are lacking
in the literature. These problems can be avoided with ease
by resorting to series expansions of the solutions obtained in
powers of small quantities of the order of the flattening of
the earth. The series expansion of the solution will be pub-
lished in a separate article.

In conclusion, we take this opportunity to express our
appreciation to G. N. Duboshin, D. Ye. Okhotsimskiy, and
M. D. Kislik for their valuable counsel and comments.
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